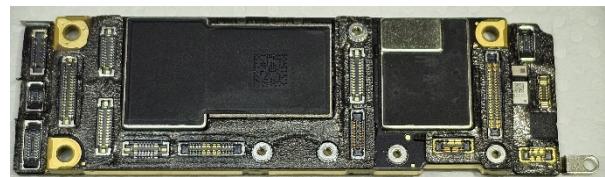
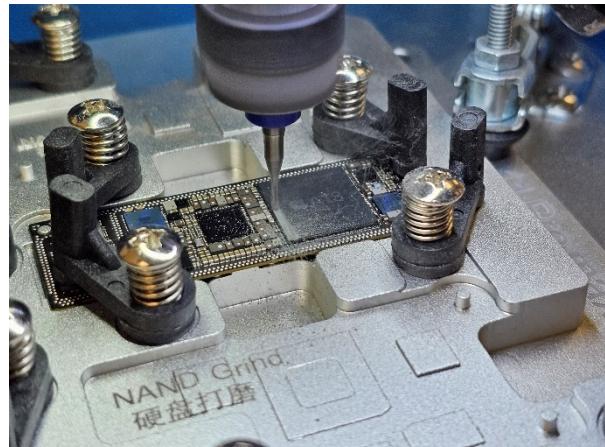

The exhibit logic board AP and RF boards were separated. This was completed using an iHeater, iPhone 11 module and appropriate heat setting (Picture Ref 6.2.1). This allowed access to the CPU and identified the damaged interposer with ripped/disconnected connections (Picture Ref 6.2.2 & 6.2.3). These damaged pads would have certainly caused instability, overheating or a 3-minute reboot issue.

The CPU and NAND appeared in good condition and the process could move forward.

A known good logic board was sourced (Picture Ref 6.2.4) and prepared for a CPU/NAND transfer. This was completed by separating the AP from the RF logic board allowing access to the CPU. This was completed once again by using an iHeater, iPhone 11 module and appropriate heat setting.

A specialist CNC machine was utilised to remove the CPU (Picture Ref 6.2.5) and NAND (Picture Ref 6.2.6). Using a CNC ensured the cleanest removal method (Picture Ref 6.2.7 & 6.2.8), eliminated heat from damaging further surrounding IC's and components. The CNC used for this procedure was a JCID-EM02 and the iPhone 11 CNC module.


The logic EEPROM was also removed using a hand grinding tool ready for donor IC.


Picture Ref 6.2.2: IMG_5846_Edited.JPG

Picture Ref 6.2.3: Damaged Pads Closeup.JPG

Picture Ref 6.2.4: Donor Logic Board.JPG

Picture Ref 6.2.5: CPU Removal.JPG